Открытия, которые изменили мир - Страница 63


К оглавлению

63

Золотистый стафилококк — распространенный микроорганизм, который можно обнаружить на коже; обычно эти бактерии, попадая в порез или рану, вызывают местную инфекцию, легко поддающуюся терапии. Но при распространении возбудителя на внутренние органы стафилококковая инфекция может обернуться смертью, в особенности если антибиотики теряют свою эффективность. К сожалению, именно это и начало происходить в 1970-е, когда МРЗС стал появляться в больницах, убивая 20–25 % инфицированных больных. Хуже того, в последнее десятилетие МРЗС вышел за пределы тюрем и других закрытых коллективов. В недавней статье в New England Journal of Medicine рассказано о том, как появляющиеся штаммы МРЗС демонстрируют устойчивость к ванкомицину, другому важному антибиотику. Авторы подчеркнули, что проблема связана не только с неграмотным использованием антибиотиков. Ее усугубил «простой в производстве» новых средств. Они пришли к выводу, что «слаженная работа исследователей и находящихся в их ведении лабораторий, промышленности и государства играет ключевую роль в процессе борьбы человека с бактериями — и с глобальными последствиями».

Слово «простой» применительно к новым антибиотикам может показаться странным, учитывая, сколько их было произведено с 1940-х. Но, как оказывается, самые распространенные сегодня антибиотики открыты в 1950-е и 1960-е. С тех пор фармацевтические компании успели их откорректировать и создать новые химические вариации. Однако, как точно отметил один автор в недавнем выпуске Biochemical Pharmacology, «все так же важно находить новые классы антибиотиков, [поскольку] устойчивые к ним микроорганизмы встречаются все чаще. Если мы не будем вкладывать достаточно средств в открытие и разработку новых классов антибактериальных препаратов, мы легко можем вернуться в те времена, когда антибиотиков еще не было…»

Многие надеялись, что биотехнологии приведут к появлению революционно новых антибиотиков, но пока они обеспечили в лучшем случае небольшой прогресс. Поэтому другие исследователи предполагают, что нам, возможно, и правда придется вернуться в «доантибиотиковые» времена и обратить более пристальное внимание на мир природы и микроорганизмы, которые занимались созданием антибиотиков намного дольше (около полумиллиарда лет), чем человек.

Преодоление резистентности: поиск ответов в прошлом?

Две трети существующих сегодня антибиотиков происходят от бактерий стрептомицет. В связи с этим может возникнуть вопрос: имеет ли смысл продолжать исследовать «природные ресурсы» в поисках новых антибиотиков? Но пока мы увидели только верхушку айсберга.

Насколько же велик этот айсберг? В выпуске Archives of Microbiology за 2001 г. исследователи сделали ошеломляющее заявление. Они выяснили, что стрептомицеты, включающие 500 или более отдельных видов, возможно, способны производить не менее 294 300 разных антибиотиков. Если у вас возник вопрос, как группа одноклеточных организмов может быть настолько продуктивной, вспомните, какие генетические двигатели спрятаны внутри этих крошечных созданий. В 2002 г. другие исследователи объявили в публикации издания Nature, что им удалось раскодировать целую генетическую последовательность видов — представителей стрептомицетов, включающую примерно 7825 генов. Это было самое большое количество генов, обнаруженных у бактерий, и, что еще более удивительно, это примерно треть от количества генов, обнаруженных у человека. При таком изобилии, пожалуй, неудивительно, что эти микробы способны создавать так много различных антибиотиков.

* * *

В начале 1980-х антропологи обнаружили скелеты древних людей, умерших более 1000 лет назад, чьи останки на удивление хорошо сохранились. В результате исследований, проведенных с помощью флуоресцентного анализа, ученым удалось найти в их костной ткани следы антибиотика тетрациклина и установить, что он мог быть произведен стрептомицетами, присутствующими в пище, которую тогда употребляли люди. Также исследователи утверждали, что тетрациклин в пище мог обусловливать «чрезвычайно низкий уровень инфекционных заболеваний» у людей той эпохи.

Нет, речь не о жителях древних поселений Геркуланума в 79 г. н. э., а о группе суданских нубийцев, живших на западном берегу Нила несколькими столетиями позже, в 350 г. н. э. И источником тетрациклина в их пище были не гранаты и не фиги, а зерна пшеницы, ячменя и проса, которые они хранили в глиняных сосудах. Ученые утверждали, что эти сосуды были идеальной средой для активного размножения стрептомицет, доля которых составляла до 70 % бактерий в почве пустынь Суданской Ниберии. Был ли тетрациклин, найденный у древних нубийцев, произведен тем же видом стрептомицет, что и обнаруженный в останках жителей древнего Геркуланума, неизвестно.

Но в этом-то и суть. В эпоху появления резистентности к антибиотикам и развития потенциально смертельных инфекций возможно ли, что этот удивительный род бактерий — источник антибиотиков для древних людей, причина появления десятков антибиотиков, открытых в 1940-е и 1950-е, производитель 2/3 современных антибиотиков и обладающий потенциалом для создания еще около 300 тыс., — пытается что-то нам сообщить?

ГЛАВА 8. Разгадать шифр Бога: открытие генетики и ДНК

В один прекрасный день на заре цивилизации, на прекрасном греческом острове Кос, в кристально чистых водах Эгейского моря молодая женщина, представительница благородного рода, незаметно проникла через черный ход в храм из камня и мрамора — Асклепион, — чтобы обратиться с просьбой к одному из первых и самых знаменитых в мире врачей. В отчаянной надежде получить совет она смущенно поведала Гиппократу о своей необычной проблеме. Женщина недавно родила мальчика. И хотя он был здоровым и пухленьким, Гиппократу, чтобы поставить диагноз, достаточно было взглянуть на малыша, закутанного в пеленки, и его белокожую мать. Темный цвет кожи младенца красноречиво свидетельствовал о пылкой страсти матери к африканскому торговцу. Если бы информация о неверности получила огласку, разразился бы скандал, сплетни распространились по острову со скоростью лесного пожара, вызвав нешуточную ярость мужа.

63