Ничего подобного. Наследственность оставалась загадкой в связи с двумя серьезными проблемами. Во-первых, большинство ученых считали, что гены состоят из белков, а не ДНК. Во-вторых, никто понятия не имел о том, как гены, чем бы они ни были, определяли наследственные признаки. Ответы на все эти загадки начали обнаруживаться в 1928 г., когда британский микробиолог Фредерик Гриффит работал над совсем другой проблемой — созданием вакцины от пневмонии. Это ему не удалось, но зато он с успехом обнаружил еще одну ключевую подсказку.
Гриффит занимался изучением Streptococcus pneumoniae, когда выяснил кое-что любопытное. Одна форма бактерий, вирулентный штамм S, образовывала гладкие колонии, а другая, безобидного штамма R, — неровные. Бактерии штамма S вызывали заболевание, так как имели полисахаридную капсулу, которая защищала их от действия иммунной системы. Бактерии штамма R оказались безвредными: не имея подобной капсулы, они распознавались и уничтожались иммунной системой. Затем Гриффит обнаружил кое-что еще более странное: если мышам вводился сначала безобидный штамм R, а затем вирулентный, но убитый нагреванием штамм S, то мыши все равно погибали. После нескольких экспериментов Гриффит понял, что прежде безвредные бактерии R каким-то образом «приобретали» у вирулентных бактерий типа S способность создавать защитную капсулу. Иными словами, несмотря на то что вирулентные бактерии S были убиты, что-то в них трансформировало безвредные R-пневмококки в болезнетворные S.
Что именно это было и как это было связано с наследственностью и генетикой? Гриффит так и не узнал об этом. В 1941 г., за несколько лет до раскрытия этой тайны, он погиб от немецкого снаряда во время бомбардировки Лондона.
Когда работа Гриффита, описывавшая «трансформацию» безвредных бактерий в вирулентную форму, была опубликована в 1928 г., Освальд Эвери, ученый из Института медицинских исследований Рокфеллера в Нью-Йорке, сначала отказался верить результатам. Да и почему, собственно, он должен был им верить? Эвери занимался изучением бактерий, описанных Гриффитом, последние 15 лет, включая защитную внешнюю капсулу, и замечание о том, что один тип мог «трансформироваться» в другой, бросал ему вызов. Но когда выводы Гриффита подтвердились, Эвери стал одним из его последователей, и к середине 1930-х он и его коллега Колин Маклауд показали, что данный эффект можно воссоздать в чашке Петри. Теперь оставалось выяснить, что именно было причиной трансформации. К 1940 г., когда Эвери и Маклауд приблизились к ответу, к ним присоединился третий исследователь, Маклин Маккарти. Но определение вещества было непростой задачей. В 1943 г., когда товарищи мучились в попытках рассортировать нагромождение в клетке белков, жиров, углеводов, нуклеинов и прочих веществ, Эвери пожаловался своему брату: «Попробуй отыскать активный элемент в этой сложной смеси! Та еще работка — сплошная душевная боль и разбитое сердце». Правда, при этом Эвери добавил интригующую фразу: «Но, в конце концов, быть может, у нас получится».
И, конечно, у них все получилось. В феврале 1944 г. Эвери, Маклауд и Маккарти опубликовали работу, в которой говорилось, что ими определен «трансформирующий принцип» путем простого — впрочем, не такого уж простого — процесса устранения. Протестировав все, что можно было найти в этой сложной клеточной смеси, они выяснили: лишь одно вещество трансформировало R-пневмококки в S-форму. Это был нуклеин — то же вещество, которое впервые было определено Фридрихом Мишером и которое они теперь назвали дезоксирибонуклеиновой кислотой, или ДНК. Сегодня этот классический труд считают первой научной работой, представившей доказательство того, что именно ДНК — та самая молекула, отвечающая за наследственность. «Кто бы мог подумать?» — писал Эвери брату.
На самом деле мало кто мог об этом подумать или даже поверить в это. Уж слишком это противоречило здравому смыслу. Как могла ДНК — которую многие ученые считали «глупой» молекулой, с химической точки зрения «скучной» по сравнению с белками — отвечать за, казалось бы, бесконечное многообразие наследственных характеристик? Но другие были заинтригованы. Возможно, более пристальный взгляд на ДНК дал бы ответ на тот самый давний вопрос: как именно работает механизм наследственности?
Одна возможная догадка, раскрывающая эту тайну, была найдена за несколько лет до этого, в 1940 г., когда американские генетики Джордж Бидл и Эдуард Тейтем представили теорию «Один ген — один белок», в соответствии с которой гены не только состояли из белков, но, возможно, и создавали их. Их исследование подтвердило то, что 40 годами ранее продемонстрировал Арчибальд Гаррод в своих трудах о «черной моче», предположив, что генами создаются ферменты (особый тип белка).
Но, пожалуй, самая интригующая находка была обнаружена в 1950-х гг. К этому времени ученые уже несколько лет знали о том, что ДНК имеет в своем составе четыре «строительных» соединения, которые называются азотистыми основаниями: аденин, тимин, гуанин и цитозин. Постоянное наличие этих молекул в ДНК и было основной причиной того, что ученые считали ее слишком «глупой», чтобы играть какую-либо роль в наследственности. Однако когда в 1944 г. была опубликована работа Эвери, Маклауда и Маккарти, Эрвин Чаргафф, биохимик из Колумбийского университета, увидел «начало биологической грамматики… текст на новом языке, или, скорее… знак того, где его искать». Не побоявшись взяться за эту загадочную «книгу», он вспоминал: «Я решил заняться поиском этого текста».